Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Tipo del documento
Intervalo de año
1.
Front Public Health ; 10: 831549, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1753419

RESUMEN

Digital technologies have played a significant role in the defense against the COVID-19 pandemic. This development raises the question of whether digital technologies have helped Chinese exports recover quickly and even grow. To answer this question, we study monthly data on Chinese exports to 40 countries/regions from January 2019 to June 2020 and covering 97 product categories. The study takes the COVID-19 outbreak as a natural experiment and treats digital trade products as the treatment group. Using a generalized difference-in-differences (DID) approach, we empirically investigate how this major global public health crisis and digital trade have influenced Chinese exports. Our empirical analysis reveals that the COVID-19 pandemic has inhibited China's export trade overall, digital trade has significantly promoted trade, and the supply mechanism has played a significant role in promoting the recovery of exports. Heterogeneity tests on destination countries/regions reveal that digital trade has significantly promoted exports to countries/regions with different income levels, with a more significant effect on low-risk destinations than on high-risk destinations. The sector heterogeneity test demonstrates that digital trade has enhanced the export recovery of sectors dealing in necessities for pandemic prevention. Other robustness tests, including parallel trend and placebo tests, support the above conclusions. Finally, we extend the research conclusions and discuss their implication for health economics and the practice of fighting COVID-19.


Asunto(s)
COVID-19 , COVID-19/epidemiología , China/epidemiología , Comercio , Humanos , Pandemias , Salud Pública
2.
Frontiers in public health ; 10, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1743791

RESUMEN

Digital technologies have played a significant role in the defense against the COVID-19 pandemic. This development raises the question of whether digital technologies have helped Chinese exports recover quickly and even grow. To answer this question, we study monthly data on Chinese exports to 40 countries/regions from January 2019 to June 2020 and covering 97 product categories. The study takes the COVID-19 outbreak as a natural experiment and treats digital trade products as the treatment group. Using a generalized difference-in-differences (DID) approach, we empirically investigate how this major global public health crisis and digital trade have influenced Chinese exports. Our empirical analysis reveals that the COVID-19 pandemic has inhibited China's export trade overall, digital trade has significantly promoted trade, and the supply mechanism has played a significant role in promoting the recovery of exports. Heterogeneity tests on destination countries/regions reveal that digital trade has significantly promoted exports to countries/regions with different income levels, with a more significant effect on low-risk destinations than on high-risk destinations. The sector heterogeneity test demonstrates that digital trade has enhanced the export recovery of sectors dealing in necessities for pandemic prevention. Other robustness tests, including parallel trend and placebo tests, support the above conclusions. Finally, we extend the research conclusions and discuss their implication for health economics and the practice of fighting COVID-19.

3.
Appl Environ Microbiol ; 88(5): e0230321, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1608119

RESUMEN

The highly transmissible severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected more than 253 million people, claiming ∼5.1 million lives to date. Although mandatory quarantines, lockdowns, and vaccinations help curb viral transmission, there is a pressing need for cost-effective systems to mitigate the viral spread. Here, we present a generic strategy for capturing SARS-CoV-2 through functionalized cellulose materials. Specifically, we developed a bifunctional fusion protein consisting of a cellulose-binding domain and a nanobody (Nb) targeting the receptor-binding domain of SARS-CoV-2. The immobilization of the fusion proteins on cellulose substrates enhanced the capture efficiency of Nbs against SARS-CoV-2 pseudoviruses of the wild type and the D614G variant, the latter of which has been shown to confer higher infectivity. Furthermore, the fusion protein was integrated into a customizable chromatography with highly porous cellulose to capture viruses from complex fluids in a continuous fashion. By capturing and containing viruses through the Nb-functionalized cellulose, our work may find utilities in virus sampling and filtration through the development of paper-based diagnostics, environmental tracking of viral spread, and reducing the viral load from infected individuals. IMPORTANCE The ongoing efforts to address the COVID-19 pandemic center around the development of diagnostics, preventative measures, and therapeutic strategies. In comparison to existing work, we have provided a complementary strategy to capture SARS-CoV-2 by functionalized cellulose materials through paper-based diagnostics as well as virus filtration in perishable samples. Specifically, we developed a bifunctional fusion protein consisting of both a cellulose-binding domain and a nanobody specific for the receptor-binding domain of SARS-CoV-2. As a proof of concept, the fusion protein-coated cellulose substrates exhibited enhanced capture efficiency against SARS-CoV-2 pseudovirus of both the wild type and the D614G variant, the latter of which has been shown to confer higher infectivity. Furthermore, the fusion protein was integrated into a customizable chromatography for binding viruses from complex biological fluids in a highly continuous and cost-effective manner. Such antigen-specific capture can potentially immobilize viruses of interest for viral detection and removal, which contrasts with the common size- or affinity-based filtration devices that bind a broad range of bacteria, viruses, fungi, and cytokines present in blood (https://clinicaltrials.gov/ct2/show/NCT04413955). Additionally, since our work focuses on capturing and concentrating viruses from surfaces and fluids as a means to improve detection, it can serve as an "add-on" technology to complement existing viral detection methods, many of which have been largely focusing on improving intrinsic sensitivities.


Asunto(s)
COVID-19 , SARS-CoV-2 , Celulosa , Control de Enfermedades Transmisibles , Humanos , Pandemias , SARS-CoV-2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA